Dynamic TLabel

BackGround

The concept for this exercise is the brain-child of Mr. Greg Kreis. Basically, the idea is to provide a generic form with enough information from the server side to make a useful application. This would give a user the short-term ability to use the Broker to make Window's applications without having Delphi. The user would not even need to know how to program in Pascal. The long-term goal is to provide information that can be used to make the same Windows-like interface across platforms (i.e. X-Windows).

After presenting the concept in the HardHat's Forum, a discussion broke out between Greg and Mike Simpson. Mike, having Delphi experience as well as M experience, decided to try to prove Greg's concept. He chose the TLabel because it was simple, yet had enough properties and events to make the point. The result is the Dynamic TLabel.

Dynamic TLabel

The Dynamic TLabel is a component that inherits from the TComponent Class. It is basically a wrapper for the TLabel that allows the system to interface with programs written on the server side to provide information and then incorporates that information to the Delphi application. The following is a list of properties of the Dynamic TLabel ...

Name				The default id DynamicLabel1

RemoteProcedure	This is the procedure name that is found in the Remote Procedure file (8994). The default is DYNAMIC TLABEL.

RemoteTag			This is the label at which the initialization will take place. That is if the initialization takes place in INIT^DELPHI and the routine identified in the Remote Procedure file is DELPHI, then you could simply say INIT or spell it out INIT^DELPHI. If the label does not exist in the routine found in the Remote Procedure file, then you MUST spell it out. The default is INIT.

RPCBroker			This component requires an RPCBroker component to be dropped on the form as well. Tie the two together by putting the name of the RPCBroker component dropped, here (See rules for setting up the RPCBroker in "RPC Broker V.1.1 Getting Started with the BDK" for information on how to setup the RPCBroker component).

Tag				Not used.

The methods that are available for use are ...

Create(AOwner : TComponent)	This is taken care of when you drop the component on the form.

Destroy					This happens when you exit the application.

Activate					This method needs to be invoked in the main form's create method. Simply have one line that says DYNAMICLABEL1.ACTIVATE where the name of the component, in this case, is DYNAMICLABEL1. This method will use the RPCBroker to connect to the server and get the information. Then it will create all the TLabels.

DeActivate				This method needs to be called in the main form's Close method (before the destroy). Simply have one line that says DYNAMICLABEL1.DEACTIVATE where the name of the component, in this case, in DYNAMICLABEL1. This method frees up the TLabels that were created and prepares the component for destruction.

Properties that are available to be set in the M Server are ...

Align			Integer

Alignment			Integer

AutoSize			Boolean

Caption			String

Color			Integer

Cursor			Integer		Not available yet

DragCursor		Integer		Not available yet

DragMode			Integer		Not available yet

Enabled			Boolean

FontColor			Integer

Height			Integer

Left				Integer

Name				String

ParentColor		Boolean

ParentFont		Boolean

ParentShowHint		Boolean

ShowAccelChar		Boolean

ShowHint			Boolean

Tag				Integer

Top				Integer

Transparent		Boolean

Visible			Boolean

Width			Integer

WordWrap			Boolean

Align, Alignment, Color, and FontColor are enumerated types within Delphi and as of this version, you need to know what the ORD for those types are in order to set these items. A program called COLORS is provided with this zip routine that shows the colors available and the integer to make that color happen. The types are TAlign, TAlignment, and TColor respectively.

Other properties are the events. Currently, the only one working is the OnClick event.

You now have all the information you need on the Delphi side of the house. You can make your application and compile it. Don't try to run it yet until the M side of the house is in order.

REMOTE PROCEDURE FILE (8994)

The default for this exercise is called DYNAMIC TLABELS. Below is a listing of this entry. You may call yours anything you want as long as you set the RemoteProcedure property of the TDynamicLabel component.

NAME: DYNAMIC TLABEL				TAG: TLABEL

 ROUTINE: IADELPHI				RETURN VALUE TYPE: GLOBAL ARRAY

 AVAILABILITY: RESTRICTED			WORD WRAP ON: TRUE

INPUT PARAMETER: PARAM LIST 1		PARAMETER TYPE: LITERAL

 MAXIMUM DATA LENGTH: 512			REQUIRED: YES

 SEQUENCE NUMBER: 1

INPUT PARAMETER: PARAM LIST 2		PARAMETER TYPE: LIST

 MAXIMUM DATA LENGTH: 1024			REQUIRED: YES

 SEQUENCE NUMBER: 2

You will always (with the exception of the INIT) have 2 input parameters. The output will be formulated in the ^TMP global and then passed back. The output is always your first parameter and it is passed in by reference. The next parameter will always be a literal. This is the jumping point that is defined in the RemoteTag portion of the TDynamicLabel component. The last parameter is a list. This list will normally contain the properties and their current definition.

IADELPHI

You may, of course, call your routine anything you wish. Below is a sample program that you can type in and run as a demo for the TDynamicLabel component. There is a set format for both input and output variables. To set a particular variable, make it look like the following ...

S ^TMP($J,"TLABEL",0)="LABEL1^TOP^10"

This example says set the TLabel "LABEL1" component's Top property to 10. This will move it 10 spaces from the top of the form. The format is always name of component in the first piece, property in the second piece, and value in the third piece. This component does not have error checking set up so the values MUST be of the correct type (cast to string). The exception is the boolean. A boolean will have TRUE for True and FALSE for False. For example ...

S ^TMP($J,"TLABEL",1)="LABEL1^ENABLE^TRUE"

This will set the TLabel "LABEL1" component's Enable property to True. The list that comes in will be a single array list and look like the following

MYLIST("0")="LABEL1^TOP^10"

MYLIST("1")="LABEL1^ENABLE^TRUE"

MYLIST("2")="LABEL1^FONT|COLOR^0" { 0 = Black }

Now a listing of the program ...

IADELPHI

IADELPHI	;

TLABEL(RESULT,INTAG,MYLIST)	;

		N IAA

		K ^TMP($J,"TLABEL")

		S:'$D(MYLIST) MYLIST=""

		I $G(INTAG)]"" S IAA=INTAG_"(.MYLIST)" D @IAA

		S RESULT=$NA(^TMP($J,"TLABEL"))

INIT(LABIN)	;

		S ^TMP($J,"TLABEL",1)="LABEL1^LEFT^50"

		S ^TMP($J,"TLABEL",2)="LABEL1^TOP^60"

		S ^TMP($J,"TLABEL",3)="LABEL1^CAPTION^HELLO WORLD"

		S ^TMP($J,"TLABEL",4)="LABEL1^ONCLICK^CLICK"

		S ^TMP($J,"TLABEL",5)="LABEL2^LEFT^100"

		S ^TMP($J,"TLABEL",6)="LABEL2^TOP^100"

		S ^TMP($J,"TLABEL",7)="LABEL2^CAPTION^LET VISTA LIVE"

		Q

CLICK(LABIN)	;

		N A0

		S A0="" F S $O(LABIN(A0)) Q:A0="" D

		.I $P(LABIN(A0),U,2)'["FONT|COLOR" Q

		.I $P(LABIN(A0),U,3)=0 S ^TMP($J,"TLABEL",1)=$P(LABIN(A0),U,1)_U_"FONT|COLOR"_U_255 Q ;RED

		.S ^TMP($J,"TLABEL",1)=$P(LABIN(A0),U,1)_U_"FONT|COLOR"_U_0 Q ;BLACK

		Q

The above procedure will produce two labels, label1 and label2. Label1 will have a caption that reads "HELLO WORLD" and label2 will read "LET VISTA LIVE". If you click on label1 it SHOULD turn the text color to red. Click on it again and the color turns back to black. Click on label2 and nothing happens. Close the form and you disconnect and destroy the labels.

SUMMARY

This has been a lot of programming and design on the fly. I scrapped my earlier proto-type in favor of what you have now. I would classify this component as version 0.00 and would not even THINK about releasing this to any paying customer. I am releasing it to you in this way because all I am trying to do here is show that we have a working concept. I hope this component will convince you. You do not need to approve of my methods, as I stated this was done on the fly and things are a little bit of a mess. I will continue to develop this particular component, but it will be slower now and your suggestions for improvement will play a vital part. Take a look at what I did and PLEASE suggest improvement or any ideas in the HardHats forum. Enjoy!!

Mike Simpson

