
RPC BROKER

GETTING STARTED WITH THE
BROKER DEVELOPMENT KIT (BDK)

Version 1.1

September 1997

Department of Veterans Affairs
VISTA Software Development

OpenVISTA Product Line

September 1997 RPC Broker V.1.1 Getting Started with the BDK iii

Table of Contents

1. Introduction... 1-1

2. Orientation .. 2-1

3. TRPCBroker Component for Delphi... 3-1

TRPCBroker Component Properties and Methods.. 3-1
TRPCBroker Key Properties... 3-2
TRPCBroker Key Methods.. 3-3
How to Connect to an M Server.. 3-4

4. Remote Procedure Calls (RPCs) ... 4-1

What is a Remote Procedure Call? ... 4-1
Create Your Own RPCs... 4-1
Writing M Entry Points for RPCs... 4-2
RPC Entry in the REMOTE PROCEDURE File ... 4-5
What Makes a Good Remote Procedure Call?.. 4-5
How to Execute an RPC from a Client Application ... 4-6
RPC Security: How to Register an RPC... 4-7

5. Other RPC Broker APIs.. 5-1

GetServerInfo Function .. 5-1
VISTA Splash Screen Procedures .. 5-2
XWB GET VARIABLE VALUE RPC ... 5-3
M Emulation Functions .. 5-3
Encryption Functions.. 5-4
$$BROKER^XWBLIB... 5-4
$$RTRNFMT^XWBLIB.. 5-4

6. Debugging and Troubleshooting... 6-1

How to Debug Your Client Application .. 6-1
Troubleshooting Connections ... 6-2

7. RPC Broker Developer Utilities ... 7-1

Programmer Settings .. 7-1

8. RPC Broker Delphi Package Library (DPL) .. 8-1

9. RPC Broker Dynamic Link Library (DLL)... 9-1

10.For More Information ... 10-1

BROKER.HLP Online RPC Broker Developer's Guide 10-1
Other RPC Broker Resources ... 10-2

Index...Index-1

Table of Contents

RPC Broker V.1.1 Getting Started with the BDK September 1997iv

September 1997 RPC Broker V.1.1 Getting Started with the BDK 1-1

1. Introduction

The RPC Broker is a client/server system within VA's Veterans Health Information
Systems and Technology Architecture (VISTA) environment. It enables client
applications to communicate and exchange data with M Servers.

This manual introduces developers to the RPC Broker and the Broker Development
Kit (BDK). The emphasis is on using the RPC Broker in conjunction with Borland's
Delphi software. However, the RPC Broker supports other development
environments.

This manual provides an overview of development with the RPC Broker. For more
complete information on development with the RPC Broker component, see the
Online RPC Broker Developer's Guide. It is in Windows Help format, in the file
BROKER.HLP, and is distributed in the BDK.

This document is intended for the VISTA development community and Information
Resource Management (IRM) staff. A wider audience of technical personnel engaged
in operating and maintaining the Department of Veterans Affairs (VA) software
may also find it useful as a reference.

About This Version of the BDK

This version of the BDK provides programmers with the capability to develop new
VISTA client/server software using the Broker Delphi component (i.e., TRPCBroker)
in a 32-bit environment.

To develop VISTA applications in a 32-bit environment you must have Delphi V. 2.0
or greater. This version of the RPC Broker component will not allow you to develop
applications in Delphi V. 1.0. However, the Broker routines on the M server will
continue to support VISTA applications previously developed in the 16-bit
environment.

The default installation of the Broker creates a separate BDK directory (i.e.,
BDK32) that contains the required Broker files for development.

Backward Compatibility Issues

Client applications compiled with this version of the RPC Broker (V. 1.1) will not
work at a site that has not upgraded its RPC Broker server software to V.1.1.

On the other hand, client applications compiled with RPC Broker V.1.0 will work
with the V. 1.1 RPC Broker server.

Introduction

1-2 RPC Broker V.1.1 Getting Started with the BDK September 1997

September 1997 RPC Broker V.1.1 Getting Started with the BDK 2-1

2. Orientation

COMMONLY USED TERMS

The following is a list of terms and their descriptions that you may find helpful
while reading the RPC Broker documentation:

Term Description

Client A single term used interchangeably to refer
to a user, the workstation (i.e., PC), and the
portion of the program that runs on the
workstation.

Component A software object that contains data and
code. A component may or may not be
visible.

 For a more detailed description, see
the Borland Delphi for Windows User
Guide.

GUI The Graphical User Interface application
that is developed for the client workstation.

Host The term Host is used interchangeably with
the term Server.

Server The computer where the data and the RPC
Broker remote procedure calls reside.

Orientation

2-2 RPC Broker V.1.1 Getting Started with the BDK September 1997

ASSUMPTIONS ABOUT THE READER

This manual is written with the assumption that you have experience working with
the following:

• VISTA computing environment (e.g., Kernel Installation and Distribution
System [KIDS])

• VA FileMan data structures and terminology

• Microsoft Windows

• Borland's Delphi development environment

• GUI standards and guidelines

• M programming language

• Object Pascal programming language

HOW TO USE THIS MANUAL

There are no special legal requirements involved in the use of the RPC Broker's
Interface.

This manual uses several methods to highlight different aspects of the material:

� "Snapshots" of computer roll-and-scroll dialogs and computer source code are
shown in a non-proportional font. For example:

 F S I=$O(UNSORTED(I)) Q:I="" S RESULT(UNSORTED(I))=UNSORTED(I)

� Object Pascal code uses a combination of upper- and lowercase characters. All
Object Pascal reserved words are in boldface type.

� Symbols are used throughout the documentation to alert you to special

information, as described in the following table:

Symbol Description

Used to inform the reader of general information including
references to additional reading material

Used to caution the reader to take special notice of critical
information

September 1997 RPC Broker V.1.1 Getting Started with the BDK 3-1

3. TRPCBroker Component for Delphi

The main tool to develop client applications for the RPC Broker environment is the
TRPCBroker component for Delphi. The TRPCBroker component adds the following
abilities to your Delphi application:

• Connecting to an M server

• Authenticate the user
• Set up the environment on the server
• Bring back the introductory text

• Invoking Remote Procedure Calls (RPCs) on the M Server

• Send data to the M Server
• Perform actions on the server
• Return data from the server to the client

To add the TRPCBroker component to your Delphi application, simply drop it from
the Kernel tab of Delphi's component palette to a form in your application.

TRPCBROKER COMPONENT PROPERTIES AND METHODS

As a Delphi component, the TRPCBroker component is controlled and accessed
through its properties and methods. By setting its properties and executing its
methods, you can connect to an M server from your application and execute RPCs
on the M server to exchange data and perform actions on the M server.

For most applications, you will only need to use a single TRPCBroker component to
manage communications with the M server.

TRPCBroker Component for Delphi

3-2 RPC Broker V.1.1 Getting Started with the BDK September 1997

TRPCBROKER KEY PROPERTIES

The following table lists the most important properties of the TRPCBroker
component. For a complete list of all of its properties, see the Online RPC Broker
Developer's Guide (BROKER.HLP), distributed with the BDK.

Property Description

ClearParameters If True, the Param property is cleared after every invocation
of the Call, strCall, or the lstCall methods.

ClearResults If True, the Results property is cleared before every
invocation of the Call method, thus assuring that only the
results of the last call are returned.

Connected Setting this property to True connects your application to
the server.

ListenerPort Sets server port to connect to a Broker Listener process
(mainly for development purposes; for end-users, determine
on the fly with GetServerInfo method.)

Param Run-time array in which you set any parameters to pass as
input parameters when calling an RPC on the server.

RemoteProcedure Name of a RemoteProcedure entry that the Call, lstCall, or
strCall method should invoke.

Results This is where any results are stored after a Call, lstCall, or
strCall method completes.

Server Name of the server to connect to (mainly for development
purposes; for end-users, determine on the fly with
GetServerInfo method.)

Each of the properties listed above is described in greater detail in the Online
RPC Broker Developer's Guide (BROKER.HLP), distributed with the BDK.

TRPCBroker Component for Delphi

September 1997 RPC Broker V.1.1 Getting Started with the BDK 3-3

TRPCBROKER KEY METHODS

This section lists the most important methods of the TRPCBroker component. For a
complete list of all of its methods, see the Online RPC Broker Developer's Guide
(BROKER.HLP), distributed with the BDK.

procedure Call;

This method executes an RPC on the server and returns the results in the
TRPCBroker component's Results property.

Call expects the name of the remote procedure and its parameters to be set up in
the RemoteProcedure and Param properties respectively. If ClearResults is
True, then the Results property is cleared before the call. If ClearParameters is
True, then the Param property is cleared after the call finishes.

function strCall: string;

This method is a variation of the Call method. Only use it when the return type
is a single string. Instead of returning results in the TRPCBroker component's
Results[0] property node, results are returned as the value of the function call.
Unlike the Call method, the Results property is not affected; no matter the
setting of ClearResults, the value is left unchanged.

procedure lstCall(OutputBuffer: TStrings);

This method is a variation of the Call method. Instead of returning results in the
TRPCBroker component's Results property, it instead returns results in the
TStrings object you specify. Unlike the Call method, the Results property is not
affected; no matter the setting of ClearResults, the value is left unchanged.

function CreateContext(strContext: string): boolean;

This method creates a context for your application. Pass an option name in the
strContext parameter. If the function returns True, a context was created, and
your application can use all RPCs entered in the option's RPC multiple.

Examples

For examples of how to use these methods to invoke RPCs, see "How to Execute an
RPC from a Client Application" in the Remote Procedure Calls chapter of this
manual.

TRPCBroker Component for Delphi

3-4 RPC Broker V.1.1 Getting Started with the BDK September 1997

HOW TO CONNECT TO AN M SERVER

To establish a connection from your application to a Broker server:

1. From the Kernel component palette tab, add a TRPCBroker component to your
form.

2. Add code to your application to connect to the server; one likely location is your
form's OnCreate event handler. The code should:

a. Use the GetServerInfo function to retrieve the run-time server and port to
connect to. This function is not a method of the TRPCBroker component; it is
described in the Other RPC Broker APIs chapter.

b. Inside of an exception handler try...except block, set RPCBroker1's
Connected property to True. This causes an attempt to connect to the Broker
server.

c. Check if an EBrokerError exception is raised. If this happens, connection
failed. You should inform the user of this and then terminate the application.

The code, placed in an OnCreate event handler, should look like:

procedure TForm1.FormCreate(Sender: TObject);
var ServerStr: String ;
 PortStr: String ;
begin
 // get the correct port and server from registry
 if GetServerInfo(ServerStr,PortStr)<>mrCancel then
 begin
 RPCBroker1.Server:=ServerStr;
 RPCBroker1.ListenerPort:=StrToInt(PortStr);
 end
 else Application.Terminate;

 // establish a connection to the Broker
 try
 RPCBroker1.Connected:=True;
 except
 On EBrokerError do
 begin
 ShowMessage('Connection to server could not be established!');
 Application.Terminate;
 end ;
 end ;
end ;

3. A connection with the Broker M Server is now established. You can use the
CreateContext method of the TRPCBroker component to authorize use of RPCs
for your user, and then use the Call, lstCall, and strCall methods of the
TRPCBroker component to execute RPCs on the M server. See the next chapter,
Remote Procedure Calls, for information on creating and executing RPCs.

September 1997 RPC Broker V.1.1 Getting Started with the BDK 4-1

4. Remote Procedure Calls (RPCs)

WHAT IS A REMOTE PROCEDURE CALL?

A remote procedure call (RPC) is a defined call to M code that runs on an M server.
A client application, through the RPC Broker, can make a call to the M server and
execute an RPC on the M server. This is the mechanism through which a client
application can:

• Send data to an M server

• Execute code on an M server

• Retrieve data from an M server

An RPC can take optional parameters to do some task and then return either a
single value or an array to the client application. RPCs are stored in the REMOTE
PROCEDURE file (#8994).

Relationship Between an M Entry Point and an RPC

An RPC can be thought of as a wrapper placed around an M entry point for use with
client applications. Each RPC invokes a single M entry point. The RPC passes data
in specific ways to its corresponding M entry point and expects any return values
from the M entry point to be returned in a pre-determined format. This allows client
applications to connect to the RPC Broker, invoke an RPC and, through the RPC,
invoke an M entry point on a server.

CREATE YOUR OWN RPCS

You can create your own custom RPCs to perform actions on the M server and to
retrieve data from the M server. Then you can call these RPCs from your client
application. Creating an RPC requires you to perform the following two steps:

1. Write and test the M entry point that is called by the RPC.

2. Add the RPC entry that invokes your M entry point, in the REMOTE

PROCEDURE file (#8994).

RPCDelphi
Component

M Entry
Point

Remote Procedure Calls (RPCs)

4-2 RPC Broker V.1.1 Getting Started with the BDK September 1997

WRITING M ENTRY POINTS FOR RPCS

First Input Parameter (Required)

The RPC Broker always passes a variable by reference in the first input parameter
to your M routine. It expects results (one of five types described below) to be
returned in this parameter. You must always set some return value into that first
parameter before your routine returns.

Return Value Types

There are five RETURN VALUE TYPES for RPCs as shown in the table below.
Choose a return value type that is appropriate to the type of data your RPC needs
to return to your client. Your M entry point should set the return value (in the
routine's first input parameter) accordingly.

RPC
Return
Value Type

How M Entry Point Should
Set the Return Parameter

RPC
Word
Wrap On
Setting

Value(s)
returned in
Client Results

Single
Value

Set the return parameter to a
single value. For example,

TAG(RESULT) ;
 S RESULT="DOE, JOHN"
 Q

No effect Value of
parameter, in
Results[0].

Array Set an array of strings into the
return parameter, each
subscripted one level descendant.

For example,
TAG(RESULT) ;
 S RESULT(1)="ONE"
 S RESULT(2)="TWO"
 Q

For large arrays consider using the
GLOBAL ARRAY return value
type to avoid memory allocation
errors.

No effect Array values,
each in a
Results item.

True Array values,
each in a
Results item.

Word
Processing

Set the return parameter the same
as you set it for the ARRAY type.
The only difference is that the
WORD WRAP ON setting affects
the WORD PROCESSING return
value type.

False Array values,
concatenated
into Results[0].

Remote Procedure Calls (RPCs)

September 1997 RPC Broker V.1.1 Getting Started with the BDK 4-3

RPC
Return
Value Type

How M Entry Point Should
Set First Input Parameter

RPC
Word
Wrap On
Setting

Value(s)
returned in
Client Results

True Array values,
each in a
Results item.

Global
Array

Set the return parameter to a
closed global reference in ^TMP.
The global's data nodes will be
traversed using $QUERY, and all
data values on global nodes
descendant from the global
reference are returned.

This type is especially useful for
returning data from VA FileMan
word processing fields, where each
line is on a 0-subscripted node.

Important: The global
reference you pass is killed by
the Broker at the end of RPC
Execution as part of RPC
cleanup. Do not pass a global
reference that is not in ^TMP
or that should not be killed.

This type is useful for returning
large amounts of data to the client,
where using the ARRAY type can
exceed the symbol table limit and
crash your RPC.

For example, to return sign-on
introductory text you could do:

TAG(RESULT);
 M ^TMP("A6A",$J)=
^XTV(8989.3,1,"INTRO")
 ;this node not needed
 K ^TMP("A6A",$J,0)
 S RESULT=$NA(^TMP("A6A",$J))
 Q

False Array values,
concatenated
into Results[0].

Global
Instance

Set the return parameter to a
closed global reference.

For example, to return the 0th
node from the NEW PERSON file
for the current user:

TAG(RESULT) ;
 S RESULT=$NA(^VA(200,DUZ,0))
 Q

No effect Value of global
node, in
Results[0].

Remote Procedure Calls (RPCs)

4-4 RPC Broker V.1.1 Getting Started with the BDK September 1997

Input Parameter Types (Optional)

The M entry point for an RPC can optionally have input parameters (i.e., beyond
the first parameter, which is always used to return an output value). The client
passes data to your M entry point through these parameters.

The client can send data to an RPC (and therefore your entry point) in one of the
following three format types:

Param
PType Param Value

Literal Delphi string value, passed as a string literal to the M server.

Reference Delphi string value, treated on the M Server as an M variable
name and resolved from the symbol table at the time the RPC
executes.

List A single-dimensional array of strings in the Mult subproperty of
the Param property, passed to the M Server where it is placed in
an array. String subscripting can be used.

The type of the input parameters passed in the Param property of the TRPCBroker
component determines the format of the data you must be prepared to receive in
your M entry point.

RPC M Entry Point Examples

The following two examples illustrate sample M code that could be used in simple
RPCs.

1. This example takes two numbers and returns their sum:

SUM(RESULT,A,B) ;add two numbers
 S RESULT=A+B
 Q

2. This example receives an array of numbers and returns them as a sorted array
to the client:

SORT(RESULT,UNSORTED) ;sort numbers
 N I
 S I=""
 F S I=$O(UNSORTED(I)) Q:I="" S RESULT(UNSORTED(I))=UNSORTED(I)
 Q

Remote Procedure Calls (RPCs)

September 1997 RPC Broker V.1.1 Getting Started with the BDK 4-5

RPC ENTRY IN THE REMOTE PROCEDURE FILE

After the M code is complete, you need to create the RPC itself in the REMOTE
PROCEDURE file (#8994). The following fields in the REMOTE PROCEDURE file
(#8994) are key to the correct operation of an RPC:

Field Name Required? Description

NAME (#.01) Yes The name that identifies the RPC (this
entry should be namespaced in the
package namespace).

TAG (#.02) Yes The tag at which the remote procedure
call begins.

ROUTINE (#.03) Yes The name of the routine which should
be invoked to start the RPC.

WORD WRAP ON
(#.08)

No Affects GLOBAL ARRAY and WORD
PROCESSING return value types only.
If set to False, data is returned in a
single concatenated string in
Results[0]. If set to True, each array
node on the M side is returned as a
distinct array item in Results.

RETURN VALUE
TYPE (#.04)

Yes This indicates to the Broker how to
format the return values. For example,
if RETURN VALUE TYPE is WORD
PROCESSING, then each entry in the
returning list will have a <CR><LF>
(<carriage return><line feed>)
appended.

WHAT MAKES A GOOD REMOTE PROCEDURE CALL?

• Silent calls (no I/O to terminal or screen, no user intervention required)

• Minimal resources required (passes data in brief, controlled increments)

• Discrete calls (requiring as little information as possible from the process

environment)

• Generic as possible (different parts of the same package as well as other

packages could use the same RPC)

Remote Procedure Calls (RPCs)

4-6 RPC Broker V.1.1 Getting Started with the BDK September 1997

HOW TO EXECUTE AN RPC FROM A CLIENT APPLICATION

1. If your RPC has any input parameters beyond the mandatory first parameter,
set a Param node in the TRPCBroker's Param property for each. For each input
parameter, set the following subproperties:

• Value
• PType (Literal, List, or Reference).

If the parameter's PType is List, however, set a list of values in the Mult
subproperty rather than setting the Value subproperty.

Here is an example of some settings of the Param property:

RPCBroker1.Param[0].Value := '10/31/97';
RPCBroker1.Param[0].PType := literal;
RPCBroker1.Param[1].Mult['"NAME"'] := 'SMITH, JOHN';
RPCBroker1.Param[1].Mult['"SSN"'] := '123-45-6789';
RPCBroker1.Param[1].PType := list;

2. Set the TRPCBroker's RemoteProcedure property to the name of the RPC to
execute.

RPCBroker1.RemoteProcedure:='A6A LIST';

3. Invoke the Call method of the TRPCBroker component to execute the RPC. All
calls to the Call method should be done within an exception handler try...except
statement, so that all communication errors (which trigger the EBrokerError
exception) can be trapped and handled. For example:

try
 RPCBroker1.Call;
except
 On EBrokerError do
 ShowMessage('A problem was encountered communicating with the
server.');
end ;

4. Any results returned by your RPC are returned in the TRPCBroker component's
Results property. Depending on how you set up your RPC, results are returned
either in a single node of the Results property (Result[0]) or in multiple nodes of
the Results property.

 You can also use the lstCall and strCall methods to execute an RPC. The main
difference between these methods and the Call method is that lstCall and
strCall do not use the Results property, instead returning results into a location
you specify.

Remote Procedure Calls (RPCs)

September 1997 RPC Broker V.1.1 Getting Started with the BDK 4-7

RPC SECURITY: HOW TO REGISTER AN RPC

Security for RPCs is handled through the RPC registration process. Each client
application must create a context for itself, which checks if the application user has
access to a "B"-type option in the Kernel menu system. Only RPCs assigned to that
option can be run by the client application.

To enable your application to create a context for itself:

1. Create a "B"-type option in the OPTION file (#19) for your application.

The OPTION TYPE "B" represents a Broker client/server type option.

2. In the RPC multiple for this option type, add an entry for each RPC that your
application calls. You can also specify a security key that can lock each RPC (this
is a pointer to the SECURITY KEY file) and M code in the RULES subfield that
can also determine whether to enable access to each RPC.

3. When you export your package using KIDS, export both your RPCs and your
package option.

4. Your application must create a context for itself on the server, which checks
access to RPCs. In the initial code of your client application, make a call to the
CreateContext method of your TRPCBroker component. Pass your application's
"B"-type option's name as a parameter. For example:

RPCBroker1.CreateContext(option_name)

If the CreateContext method returns True, only those RPCs designated in the
RPC multiple of your application option will be permitted to run.

If the CreateContext method returns False, you should terminate your
application (if you don't your application will run, but you will get errors every
time you try to access an RPC).

5. End-users of your application must have the "B"-type option assigned to them on
one of their menus, in order for CreateContext to return True.

Bypassing RPC Security for Development

Having the XUPROGMODE security key allows you to bypass the Broker security
checks. You can run any RPC without regard to application context (without having
to use the CreateContext method). This is a convenience for application
development. When you complete development, make sure you test your application
from an account without the XUPROGMODE key, to ensure that all RPCs needed
are properly registered.

Remote Procedure Calls (RPCs)

4-8 RPC Broker V.1.1 Getting Started with the BDK September 1997

BrokerExample Online Code Example

The BrokerExample sample application provided with the BDK demonstrates the
basic features of developing RPCBroker applications, including:

• Connecting to an M server

• Creating an application context

• Using the GetServerInfo function

• Displaying the VISTA splash screen

• Setting the RPCBroker.Param property for each Param Ptype (literal, reference,
list)

• Calling RPCs with the Call method

• Calling RPCs with the lstCall and strCall methods

The client source code files for the BrokerExample application are located in the
SAMPLES\BROKEREX subdirectory of the main BDK32 directory.

September 1997 RPC Broker V.1.1 Getting Started with the BDK 5-1

5. Other RPC Broker APIs

GETSERVERINFO FUNCTION

The GetServerInfo function retrieves the end-user workstation's server and port.
Use this function to set the TRPCBroker component's Server and ListenerPort
properties to reflect the end-user workstation's settings before connecting to the
server.

If there is more than one server/port to choose from, GetServerInfo displays an
application window that allows users to select a service to connect to:

If exactly one server and port entry is defined in the Windows Registry,
GetServerInfo does not display its dialog window. The values in the single Windows
Registry entry are returned, with no user interaction.

If more than one server and port entry exists in the Windows registry, the dialog
window is displayed, and the end user can choose which server to connect to.

If no values for server and port are defined in the Windows Registry, GetServerInfo
does not display its dialog window, and automatic default values are returned
(BROKERSERVER and 9200).

Syntax of GetServerInfo function:

function GetServerInfo(var Server, Port: string): integer ;

The unit is RpcConf1.

Other RPC Broker APIs

5-2 RPC Broker V.1.1 Getting Started with the BDK September 1997

VISTA SPLASH SCREEN PROCEDURES

Two procedures in SplVista.PAS unit are provided to display a VISTA splash screen
when an application loads:

procedure SplashOpen;

procedure SplashClose(TimeOut: longint);

It is recommended that the splash screen be opened and closed in the section of
Pascal code in an application's project file (i.e., .DPR).

To use the splash screen in an application:

1. Open your application's project (.DPR) file (in Delphi, choose View | Project
Source).

2. Include the SplVista in the uses clause of the project source.

3. Call SplashOpen immediately after the first form of your application is created
and call SplashClose just prior to invoking the Application.Run method.

4. Use the TimeOut parameter to ensure a minimum display time.

uses
 Forms, Unit1 in 'Unit1.pas', SplVista;

{$R *.RES}

begin
 Application.Initialize;
 Application.CreateForm(TForm1, Form1);
 SplashOpen;
 SplashClose(2000);
 Application.Run;

 end .

Other RPC Broker APIs

September 1997 RPC Broker V.1.1 Getting Started with the BDK 5-3

XWB GET VARIABLE VALUE RPC

You can call the XWB GET VARIABLE VALUE RPC (distributed with the RPC
Broker) to retrieve the value of any M variable in the server environment. Pass the
variable name in Param[0].Value and the type (reference) in Param[0].PType. Also,
the current context of your user must give them permission to execute the XWB
GET VARIABLE VALUE RPC (it must be included in the RPC multiple of the "B"-
type option registered with the CreateContext function).

For example:

RPCBroker1.RemoteProcedure := 'XWB GET VARIABLE VALUE';
RPCBroker1.Param[0].Value :='DUZ';
RPCBroker1.Param[0].PType := reference;
try
 RPCBroker1.Call;
except
 On EBrokerError do
 ShowMessage('Connection to server could not be established!');
end ;
ShowMessage('DUZ is '+RPCBroker1.Results[0]);

M EMULATION FUNCTIONS

Piece Function

The Piece function is a scaled down Pascal version of M's $PIECE function. It is
declared in MFUNSTR.PAS.

function Piece(x: string ; del: string ; piece: integer) : string ;

Translate Function

The Translate function is a scaled down Pascal version of M's $TRANSLATE
function. It is declared in MFUNSTR.PAS.

function Translate(passedString, identifier, associator: string): string ;

Other RPC Broker APIs

5-4 RPC Broker V.1.1 Getting Started with the BDK September 1997

ENCRYPTION FUNCTIONS

Some rudimentary encryption and decryption functions are provided by Kernel and
the RPC Broker. Data can be encrypted on the client end and decrypted on the
server, and vice-versa.

In Delphi

Include HASH in the "uses" clause of the unit in which you'll be encrypting or
decrypting.

Function prototypes are as follows:

function Decrypt(EncryptedText: string): string ;

function Encrypt(NormalText: string): string ;

On the M Server

To encrypt:

>S CIPHER=$$ENCRYP^XUSRB1("Hello world!") W CIPHER

/U'llTG~TVl&f-

To decrypt:

>S PLAIN=$$DECRYP^XUSRB1(CIPHER) W PLAIN

Hello world!

$$BROKER^XWBLIB

Use this function in the M code called by an RPC to determine if the current process
is being executed by the Broker. It returns 1 if this is true, 0 if false.

$$RTRNFMT^XWBLIB

Use this function in the M code called by an RPC to change the return value type
that the RPC will return on the fly. This allows you to change the return value type
to any valid return value type (SINGLE VALUE, ARRAY, WORD PROCESSING,
GLOBAL ARRAY, or GLOBAL INSTANCE). It also lets you set WORD WRAP ON
to True or False, on the fly, for the RPC.

For more information about $$RTRNFMT^XWBLIB, see the Online RPC
Broker Developer's Guide (BROKER.HLP), distributed with the BDK.

September 1997 RPC Broker V.1.1 Getting Started with the BDK 6-1

6. Debugging and Troubleshooting

HOW TO DEBUG YOUR CLIENT APPLICATION

Beside the normal debugging facilities provided by Delphi, you can also invoke a
debug mode so that you can step through your code on the client side and your RPC
code on the M server side simultaneously.

To do this:

1. On the client side, Set the DebugMode property on the TRPCBroker
component to True. When the TRPCBroker component connects with this
property set to True, you will get a dialog window indicating your
workstation IP address and the port number.

2. At this point, switch over to the M server and set any break points in the
routines being called in order to help isolate the problem. Then issue the M
debug command (e.g., ZDEBUG in DSM).

3. Start the following M server process:

>D EN^XWBTCP

You will be prompted for the workstation IP address and the port number.
After entering the information, switch over to the client application and click
on the OK button of the dialog window.

4. You can now step through the code on your client and simultaneously step
through the code on the server side for any RPCs that your client calls.

RPC Error Trapping

M errors on the server that occur during RPC execution are trapped by the use of M
and Kernel error handling. In addition, the M error message is sent back to the
Delphi client. Delphi will raise an exception EBrokerError and a popup box
displaying the error. At this point RPC execution terminates and the channel is
closed.

Troubleshooting and Debugging

6-2 RPC Broker V.1.1 Getting Started with the BDK September 1997

TROUBLESHOOTING CONNECTIONS

Identifying the Listener Process on the Server

On DSM systems, where the Broker Listener is running, the Listener process name
is RPCB_Port:NNNN, where NNNN is the port number being listened to. This
should help quickly locate Listener processes when troubleshooting any connection
problems.

Identifying the Handler Process on the Server

On DSM systems the name of a Handler process is ipXXX.XXX:NNNN, where
XXX.XXX are the last two octets of the client IP address and NNNN is the port
number.

Testing Your RPC Broker Connection

To test the RPC Broker connection from your workstation to the M Server, use the
RPC Broker Diagnostic Program (RPCTEST.EXE).

For a complete description of the RPC Broker Diagnostic program, please refer
to the Troubleshooting chapter of the RPC Broker Systems Manual.

September 1997 RPC Broker V.1.1 Getting Started with the BDK 7-1

7. RPC Broker Developer Utilities

PROGRAMMER SETTINGS

You can use BrokerProgPref.exe to define certain default property values for the
TRPCBroker component. When you place TRPCBroker component(s) on your
form(s) in Delphi, the settings you define are used as the default property values.

You may want to make an entry for BrokerProgPref.exe in Delphi's Tools Menu, to
make it easily accessible from within Delphi.

Setting Description

ClearParameters If checked, sets the ClearParameters property of a
TRPCBroker component to True when you add one to a form.

ClearResults If checked, sets the ClearResults property to of a
TRPCBroker component to True when you add one to a form.

ListenerPort Sets the ListenerPort property of a TRPCBroker component
to the specified value when you add one to a form.

Server Sets the Server property of a TRPCBroker component to the
specified value when you add one to a form.

Connect in Delphi
IDE

Enables or disables the connection to the M server from
within the Borland Integrated Development Environment
(IDE). Disabling this is useful when you are developing in an
environment without a connection to an M server. For
example, when editing certain server properties, an attempt
is made to connect to the Server (if enabled).

RPC Broker Developer Utilities

7-2 RPC Broker V.1.1 Getting Started with the BDK September 1997

September 1997 RPC Broker V.1.1 Getting Started with the BDK 8-1

8. RPC Broker Delphi Package Library (DPL)

Delphi 3.0 Packages

A new feature with Delphi V. 3.0 enables applications to be distributed in specially
compiled dynamic-link libraries called Delphi Package Libraries (DPLs). DPLs
enable code-sharing, reduction of executable file size, and conservation of system
resources. The use of DPLs is restricted to development in Delphi 3 or higher.

VistaBroker.DPL

You can compile the TRPCBroker component code into your application, or you can
choose instead to link your application to the VistaBroker.DPL dynamic link
library.

For more information on how to use DPLs, see the Borland Delphi 3 User's
Guide.

The VistaBroker.DPL file is installed on end-user workstations by the RPC Broker
V. 1.1 end-user client workstation installation program, along with the other RPC
Broker V. 1.1. client files. It is installed in an appropriate directory, depending on
the operating system, such as \WINDOWS\SYSTEM, such that the DPL is
accessible when it is called by application programs. Therefore, you do not need to
distribute VistaBroker.DPL with your application.

Distributing the Delphi VCL30.DPL

If you choose to access functionality of the TRPCBroker component through the
VistaBroker.DPL dynamic link library, an additional requirement is that the
VCL30.DPL library (provided with Delphi V. 3.0) be installed on the end-user
workstation.

The RPC Broker does not distribute VCL30.DPL to end-user workstations (it only
distributes VistaBroker.DPL). You must ensure that VCL30.DPL is also installed
on end-user workstations, perhaps through the installation instructions you provide
to system managers.

RPC Broker Delphi Package Library (DPL)

8-2 RPC Broker V.1.1 Getting Started with the BDK September 1997

September 1997 RPC Broker V.1.1 Getting Started with the BDK 9-1

9. RPC Broker Dynamic Link Library (DLL)

DLL INTERFACE

The RPC Broker provides a Dynamic Link Library (DLL) interface, which acts like
a "shell" around the Delphi TRPCBroker component. The DLL is contained in the
file BAPI32.DLL.

The DLL interface enables client applications, written in any language that
supports access to Microsoft Windows DLL functions, to take advantage of all
features of the TRPCBroker component. This allows programming environments
other than Borland Delphi to make use of the TRPCBroker component. All of the
communication to the server is handled by the TRPCBroker component, accessed
via the DLL interface.

Exported Functions

The complete list of functions exported in the DLL is provided in the online Broker
Developer's Guide. Functions are provided in the DLL for:

• Creating and destroying TRPCBroker components.

• Setting and retrieving TRPCBroker component properties.

• Executing TRPCBroker component methods.

Header Files Provided

The following header files provide correct declarations for DLL functions:

C BAPI32.H
C++ BAPI32.HPP
Visual Basic BAPI32.BAS

Sample DLL Application

The VBEGCHO sample application, distributed with the Broker Development Kit,
demonstrates use of the TRPCBroker DLL from Microsoft Visual Basic.

RPC Broker Dynamic Link Library (DLL)

9-2 RPC Broker V.1.1 Getting Started with the BDK September 1997

Return Values from RPCs

Results from an RPC executed on an M server are returned as a text stream. This
text stream may or may not have embedded <CR><LF> character combinations.

When you call an RPC using the TRPCBroker component for Delphi, the text
stream returned from an RPC is automatically parsed and returned in the
TRPCBroker component's Results property as follows:

Results stream
contains <CR><LF>
combinations

Location/format of results
(assumes RPC's Word Wrap On field is True if RPC is
GLOBAL ARRAY or WORD PROCESSING type)

Yes Results nodes, split based on <CR><LF> delimiter
No Results[0]

When you call an RPC using the DLL interface, the return value is the unprocessed
text stream, which may or may not contain <CR><LF> combinations. It is up to you
to parse out what would have been individual Results nodes in Delphi, based on the
presence of any <CR><LF> character combinations in the text stream.

COTS Development and the DLL

The Broker DLL serves as the gateway to the REMOTE PROCEDURE file (#8994)
for non-Delphi client/server applications. In order to use any RPCs not written
specifically by the client application (e.g., CONSULTS FOR A PATIENT, USER
SIGN-ON RPCs, or the more generic FileMan RPCs), you must call the RPC Broker
DLL with input parameters defined and results accepted in the formats required by
the RPC being called.

Therefore, to use the Broker DLL interface you must determine the following
information for each RPC you plan to use:

• How does the RPC expect input parameters, if any, to be passed to it?

• Will you be able to create any input arrays expected by the RPC in the same

format expected by the RPC?

• What will the results data stream returned by the RPC look like?

September 1997 RPC Broker V.1.1 Getting Started with the BDK 10-1

10. For More Information

BROKER.HLP Online RPC Broker Developer's Guide

This manual provides an overview of development with the RPC Broker. For more
complete information on development with the RPC Broker component, see the
Online RPC Broker Developer's Guide. It is in Windows Help format, in the file
BROKER.HLP, distributed with the BDK.

You may want to make an entry for BROKER.HLP in Delphi's Tools Menu, to make
it easily accessible from within Delphi. To do this, use Delphi's Tools | Configure
Tools option. Create a new menu entry similar to the following:

The information in the BROKER.HLP file is also available, in HTML format, on the
RPC Broker home page:

 http://www.vista.med.va.gov/softserv/infrastr.uct/broker

BROKER.HLP as Context Sensitive Help Within Delphi

You can install the BROKER.HLP file in such a way that it provides context-
sensitive help within Delphi on the TRPCBroker component and its associated
properties and methods. This help is available if you have followed the instructions
in the RPC Broker V. 1.1 Installation Guide to install the Broker help file in Delphi.
When installed, you can select the TRPCBroker component or one of its properties
in the Object Inspector, and press the F1 key to get help on that item.

For More Information

10-2 RPC Broker V.1.1 Getting Started with the BDK September 1997

OTHER RPC BROKER RESOURCES

To learn more about the RPC Broker, consult these related resources:

Title Format

Online Developer's Guide Windows Help (BROKER.HLP)
Release Notes Printed, Acrobat PDF, and HTML
Installation Guide Printed, Acrobat PDF, and HTML
Systems Manual Printed and Acrobat PDF
Technical Manual Printed and Acrobat PDF
Security Guide Printed and Acrobat PDF

RPC BROKER WEB SITE

Additional information about the RPC Broker, as well as all RPC Broker manuals,
are available at the RPC Broker web site:

http://www.vista.med.va.gov/softserv/infrastr.uct/broker/

September 1997 RPC Broker V.1.1 Getting Started with the BDK Index-1

Index

Broker.Hlp 10-1
BROKER^XWBLIB......................... 5-4
BrokerProgPref.exe 7-1
Bypassing Security (for Development)

.. 4-7
Call method...............................3-3, 4-6
Context Sensitive Help.................. 10-1
CreateContext method3-3, 4-7, 5-3
Debugging6-1–6-2
DECRYP^XUSRB1.......................... 5-4
Decrypt method................................ 5-4
DPL .. 8-1
Dynamic Link Library (DLL)...9-1–9-2
EN^XWBTCP 6-1
ENCRYP^XUSRB1 5-4
Encrypt method 5-4
Encryption/decryption functions..... 5-4
Error Message Handling 6-1
GetServerInfo method3-2, 3-4, 5-1
lstCall method.................................. 3-3
Message Handling, Errors............... 6-1
Online Code Samples (RPCs) 4-8
Online Developer's Guide.............. 10-1
OPTION file (#19)............................4-7
Piece function................................... 5-3
Programmer settings....................... 7-1
Registering RPCs............................. 4-7
Remote Procedure Calls (RPCs)4-1–4-

8
Bypassing Security 4-7
Executing...................................... 4-6

M Entry Points......................4-2–4-4
Online Code Samples................... 4-8
Registering 4-7
RPC Entry 4-5

REMOTE PROCEDURE file4-1, 4-5,
9-2

RTRNFMT^XWBLIB 5-4
Splash Screen................................... 5-2
SplashClose method 5-2
SplashOpen method......................... 5-2
strCall method 3-3
Translate function 5-3
Troubleshooting6-1–6-2
TRPCBroker component...........3-1–3-4

Call method 3-3
Connecting to an M Server 3-4
CreateContext method...3-3, 4-7, 5-3
lstCall method.............................. 3-3
Methods .. 3-3
Properties 3-2
strCall method 3-3

TRPCBroker Component
Call method 4-6

Vista Splash Screen......................... 5-2
VistaBroker.DPL 8-1
Web site (RPC Broker) 10-2
XUPROGMODE security key 4-7
XWB GET VARIABLE VALUE 5-3
XWBLIB

$$BROKER^XWBLIB 5-4
$$RTRNFMT^XWBLIB............... 5-4

Index

Index-2 RPC Broker V.1.1 Getting Started with the BDK September 1997

	Introduction
	Orientation
	TRPCBroker Component
	Properties
	Methods
	Connecting

	RPCs
	M Entry Points
	RPC Entry
	How to call
	Registering
	BrokerExample

	Other RPC Broker APIs
	GetServerInfo
	Splash Screen
	XWB GET VARIABLE VALUE RPC
	M Emulation
	Encryption
	$$BROKER^XWBLIB
	$$RTRNFMT^XWBLIB

	Debugging
	Utilities
	Broker DPL
	Broker DLL
	For More Information

